

Development of a Two-Phase Mechanically Pumped Loop (20MPL) for the Thermal Control of Telecommunication Satellites

Julien HUGON - Thales Alenia Space Amaury LARUE de TOURNEMINE – CNES Gennadiy GORBENKO – National Aerospace University (Kharkiv Aviation Institute) Pavlo GAKAL – National Aerospace University (Kharkiv Aviation Institute) Vasyl RUZAYKIN – National Aerospace University (Kharkiv Aviation Institute) Tisna TJIPTAHARDJA – ESA Rudolf BLEULER – Realtechnologie AG

REALTECHNOLOGIE AG

Presentation plan

Page 2

Background

- Architecture/thermal hypothesis and requirements
- 20MPL hydraulic scheme
- 2ΦMPL components
- Mathematical modeling
- 20MPL overall mass budget
- 20MPL ground prototype
- 2008 perspectives

The future large and powerful telecommunication satellites could need the use of large deployable radiators (DPR) and efficient thermal loop to transport large amount of heat on long distances

<u>Main original need</u> : @bus Extended Range <u>Other potential applications</u> : very dissipative units like active antennas

About Mechanically Pumped Loops

Page 4

- > A two-phase TCS was developed in the 90's for ISS Russian Segment
- In 2002, Russian/Ukrainian experience on both products has been investigated by ThAS through a Trade-Off study with mass as the main criterion : 30% mass saving with a two-phase system was demonstrated
- In 2005, ThAS/CNES, through a R&T program, started a development phase with the first step consisting in the evaluation of an Ukrainian NH₃ 2ΦMPL prototype to be designed, manufactured and tested by the Kharkov Aviation Institute according to ThAS requirements

Architecture/Thermal Hypothesis & Requirements (1/5)

Page 6

Platform with shelves

Architecture/Thermal Hypothesis & Requirements (2/5)

Page 7

Architecture/Thermal Hypothesis & Requirements (3/5)

Page 8

Units thermal characteristics

	Number of Active Components	Dissipation per Unit (W)	Total Dissipation (W)
TWT 1st Floor TWTA	60	50	3000
TWT 2nd Floor TWTB	60	30	1800
OMUX Lower Shearwall Part OMUXA	30	22	660
OMUX Upper Shearwall Part OMUXB	30	18	540
	Total Heat Load (W)		6000

	Calculation				
	Operating Te	emperature (°C)	Non Operating	Temperature (°C)	Cold Start Up (°C)
	Min	Max	Min	Max	
TWT	+10	+70	-20	+70	-20
OMUX	+35	+75	-20	+75	-20

	TWTA	OMUXA	TWTB	OMUXB
m (kg)	0,80	0,90	0,80	0,15
mCp (J/K)	720	810	720	135

Architecture/Thermal Hypothesis & Requirements (4/5)

Page 9

Architecture/Thermal Hypothesis & Requirements (5/5)

Page 10

Environmental conditions (2/2)

$$(1 + F_{rad-space}) \varepsilon_{OSR} \sigma S_{rad} (T_{rad+X}^4 - T_{env+X}^4) = Q_{MPL+X} (1 + F_{rad-space}) \varepsilon_{OSR} \sigma S_{rad} (T_{rad-X}^4 - T_{env-X}^4) = Q_{MPL-X}$$

S _{rad} (m ²)	F _{rad-space}
5	0,86
4,5	0,85
4	0,83
3,5	0,82
3	0,80
2,5	0,77

Environmental temperatures variation the deployable radiators for different orbital positions in winter solstice $S_{rad}=5m^2$

$$Q_{MPL_tot} = Q_{MPL+X} + Q_{MPL-X}$$

2φ MPL Hydraulic Scheme (1/2)

130

Throttles

2φ MPL Components (1/5)

Page 13

- Evaporator tubing
- Pump
- Heat-controlled accumulator (HCA)
- Radiators with embedded heat pipes
- Condenser/subcooler components
- Throttles
- Heaters

Optimization of the components design to minimize the overall system mass :

$$M_{MPL} = \left(M_{tube} + M_{fluid} + M_{pump} + M_{power} + M_{rad}\right) \rightarrow \min$$

Page 14

Evaporators tubing

Page 15

Condenser/subcooler components in the radiators

NACPA II Pump Opportunity (1/2)

In 2005-2006, ThAS has been invited by ESA to follow NACPA project that has consisted in Realtechnologie AG review of the NACPA centrifugal pump package (documentation + hardware, performance tests included) developed by ESA/ETEL in the 90's

✓ Between 2006 and 2008, ThAS collaborates for the ESA/Realtechnologie AG development of a new NH₃ pump/motor engineering model and of a prototype of the associated driver motor electronic unit (NACPA II project)

2φ MPL Components (5/5)

Page 17

NACPA II Pump Opportunity (2/2)

•ThAS is responsible for the thermal analysis of the NACPA II pump

•Cavitation issue in the pump can be critical at low temperature

Temperature reserve : maximum allowable local temperature increase in the pump

Pressure reserve : maximum allowable local pressure drop inside the pump (only 0.44bar at –10°C)

Mathematical Modeling (1/2)

Nodalisation of flight 2Φ MPL

Mathematical Modeling (2/2)

Page 19

2φ MPL Mass Budget

Page 20

Overall Mass Budget

MPL components	Mass, kg	Comments
Mass of radiators + tubes + HCA	104	Surface area of one side of radiator is equal to 4.3 m^2 calculated based on conservative hot heat removal conditions corresponding to 270^0 with the same environmental conditions of both radiators. Thermal gradient of MPL between TWT unit and radiator skin is equal to 22.2 K : 9.5K between TWT and evaporator fluid (two-phase thermal exchange calculation) and 12.7K between condenser fluid and radiator => Global conductance>120W/K and Heat Rejection Capacity>650W/m ²
Ammonia	8	
Pump unit (redunded, with electronics)	8	Operating point of pump corresponds to 1.17 bar and $44 \times 10-6$ m ³ /s at 50°C temperature of ammonia. Required power of pump is less than 50 W.
Total	120	20 kg/kW but without the shielding against micrometeorits => 25kg/kW is nevertheless reachable (P=0.998 for 15 years)

2φ MPL Prototype (2/4)

Page 22

Condenser and cooling fluid circulation

Page 24

The prototype partly assembled

MPL Prototype Functional Testing

The proof, leak and filling phases are foreseen for the end of May

During the second semester of 2008

Both steady-state (hot and cold cases) and transient (hot to cold and cold to hot) will be tested The regulation concept using HCA heating and centralized heating will be investigated Start-up issue of the system will be investigated too

NACPA Pump

- The pump BBM shall be successfully tested for performances (including cavitation test) for the end of May
- The pump+motor DM and the DME BBM shall be assembled/tested for the end of 2008